
When your slides
read themselves

a binary inception
Ange Albertini, September 2013

(written in April 2014)

disclaimer
this technique was already used in my presentation at
44con, however I didn’t give the full details at the time.
And since Adobe blacklists PDF starting with PEs signature,
it can’t be published in PoC||GTFO.

so here are the details, before I forget…

https://corkami.googlecode.com/files/44CON2013-Messing%20with%20binary%20formats.zip

Before

I crafted several funky PoCs in the past, such as
a PDF + PE + ... (in ASM)

the idea

As soon as it’s hand-made, one may not expect
it could work in any case.
What would be a perfect demo?
What would convince the most the audience
that it really works?

What has the audience seen until the moment
of your demo?

just yourself and your slides

slides == demo

so let’s make the demo with the slides
themselves.
So, by the time you’re announcing the demo,
you can say:

actually, we’ve been in the demo all along.
the slides are the demo

⇒ inception :)

the slides are the demo ?

the slides are typically in PDF (YMMV)
So let’s merge a genuine PDF slide deck and a
genuine PDF viewer

is that all?

let’s also make it:
● a ZIP

○ to bundle the PoCs
○ not detailed here - see my 44con slides for details

https://corkami.googlecode.com/files/44CON2013-Messing%20with%20binary%20formats.zip

...and an alternate PDF…
(when opened with Chrome)

(not detailed here)

...and also an HTML webpage

a PDF viewer in single PE?

Sumatra
● single executable
● no installation required
● lightweight

Perfect!

http://blog.kowalczyk.info/software/sumatrapdf/free-pdf-reader.html
http://blog.kowalczyk.info/software/sumatrapdf/free-pdf-reader.html

Merging PE & PDF

● not covered here, see slides for the general
case

● however a couple of extra problems had to be
solved

Problem 1

● PE/PDF payload before & after the HTML
page

Solution:
● surround with comments to hide most stuff
<!-- garbage -->

<html>
…
</html>

<!-- garbage

Problem 1.5

● file has to start with MZ
○ can’t be hidden via comment

Solution:
● CSS to the rescue:

define body hidden by default
○ trick from lcamtuf

http://lcamtuf.coredump.cx/squirrel/

MZ<!--
 …
--><html>
<body onload="Mario(true, 2);">
<style>
body { visibility: hidden; }
.n {
 visibility: visible;
…
}</style>
<div class='n'>
<h1>ReadMe</h1>
...

Problem 2

● a compressed PDF data might accidentally
contains “-->”
○ which would kill your HTML part

Solution:
● apply an ASCIIHexDecode filter on each

binary stream of your PDF
○ Guillaume Delugré’s Origami will handle that

magically for us

Problem 2.5

Warning:
● forcing any filter blindly will break JPEG

images: they require DCTDecode filter

Origami script
begin

 require 'origami'

rescue LoadError

 ORIGAMIDIR = "#{File.dirname(__FILE__)}/../../lib"

 $: << ORIGAMIDIR

 require 'origami'

end

include Origami

pdf = PDF.read "doc.pdf"

pdf.root_objects.find_all{|o| o.is_a? Stream}.each {|s|

 # decode stream

 decoded = s.data

 # add a final filter

 s.Filter = [s.Filter || []].flatten.unshift(:ASCIIHexDecode) # or ASCII85Decode

 # force the stream to be re-encoded

 s.data = decoded

}

pdf.save "docASCII.pdf"

Problem 3

● Sumatra is a PDF viewer
○ it contains PDF keywords
○ which interferes with PDF parsing ;)

⇒ use a packer

but compressed data might contain “-->”
⇒ same problem again!

⇒ keep trying various packers/algo until it doesn’t :D

UPX with LZMA eventually worked

Problem 4

● Sumatra has a Manifest
○ it’s XML and still present once packed
○ contains a --> comment
○ removing the Manifest entirely doesn’t work well :)

just remove (only) the comment in the Manifest

Victoly !

Conclusion

● completely useless? :D
● really works on any PDF

the most important:
a convinced audience

ACK

Guillaume Delugré, lcamtuf, Jonas Magazinius...

Questions/suggestions?
@angealbertini

Want more?
read PoC||GTFO !

