
Curated Databases

Peter Buneman
School of Informatics

University of Edinburgh
Edinburgh EH8 9LE, UK

opb@inf.ed.ac.uk

James Cheney
School of Informatics

University of Edinburgh
Edinburgh EH8 9LE, UK

jcheney@inf.ed.ac.uk

Wang-Chiew Tan
Dept. of Computer Science

University of California, Santa Cruz
Santa Cruz, CA 95064, USA

wctan@cs.ucsc.edu

Stijn Vansummeren
Hasselt University and

Transnational University of Limburg
Diepenbeek, Belgium

stijn.vansummeren@uhasselt.be

ABSTRACT

Curated databases are databases that are populated and
updated with a great deal of human effort. Most reference
works that one traditionally found on the reference shelves
of libraries – dictionaries, encyclopedias, gazetteers etc. –
are now curated databases. Since it is now easy to publish
databases on the web, there has been an explosion in the
number of new curated databases used in scientific research.
The value of curated databases lies in the organization and
the quality of the data they contain. Like the paper refer-
ence works they have replaced, they usually represent the
efforts of a dedicated group of people to produce a definitive
description of some subject area.

Curated databases present a number of challenges for data-
base research. The topics of annotation, provenance, and
citation are central, because curated databases are heavily
cross-referenced with, and include data from, other data-
bases, and much of the work of a curator is annotating exist-
ing data. Evolution of structure is important because these
databases often evolve from semistructured representations,
and because they have to accommodate new scientific dis-
coveries. Much of the work in these areas is in its infancy,
but it is beginning to provide suggest new research for both
theory and practice. We discuss some of this research and
emphasize the need to find appropriate models of the pro-
cesses associated with curated databases.

Categories and Subject Descriptors

H.2 [Database Management]: General

General Terms

Design, Languages, Theory

Keywords

Curation, annotation, provenance, archiving, citation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-108-8/08/06 ...$5.00.

1. WHAT IS A CURATED DATABASE?
The term “curated” comes from the Latin curare – to care

for. Of course, all valuable data sets are cared for in some
way or other, but the term curated database is normally re-
served for those databases whose content (often about a spe-
cialized topic) has been collected by a great deal of human
effort through the consultation, verification, and aggregation
of existing sources, and the interpretation of new (often ex-
perimentally obtained) raw data. Many curated databases
act as publications and are currently replacing the tradi-
tional reference works found in libraries such as dictionar-
ies, encyclopedias, gazetteers, etc. Some notable examples
of curated databases include:

• UniProt [2] (formerly called SwissProt), which forms
the standard reference for protein sequence data in
molecular biology. It currently consists of over 300,000
entries. This database has a large team of dedicated
curators and is typically regarded as a “gold standard”
of protein databases.

• The CIA World Factbook [20], which is probably the
most widely used source of demographic data. It was
first published as a book around 1990 and was there-
after released annually. For the past 8 years or more
the Factbook has also been published on-line. Re-
cently, the interval between releases of the on-line ver-
sion has been reduced to two weeks.

• The IUPHAR receptor database [48], which describes
the molecules that transmit information across the cell
membranes. This database is typical of a very large
number of small curated biological databases. For ex-
ample, unlike UniProt and the World Factbook, it is
not backed by a large organization: most of the cu-
ration effort is supplied by volunteers, and only two
people are involved with its direct maintenance.

Wikipedia and other wikis are also curated in that they are
the product of direct human effort, and they provide some of
the features we believe are desirable for curated databases.
Wikis differ from most curated databases in that there is
little or no structure imposed on the entries. Curated da-
tabases – whether or not they are supported by relational
database technology – are usually designed to be machine

1

readable and thus amenable to data extraction tools, such
as query languages that are common for databases. Socially,
curated databases differ from wikis in that the curation pro-
cess is usually more heavily orchestrated in the latter. How-
ever, there is much to be gained by trying to combine the
best of wiki and database technology and some of the re-
search we describe in later sections is an attempt to do just
that.

The examples above form only the tip of the iceberg. The
number of publicly available curated databases is exploding
thanks to today’s web technology, which makes it relatively
easy to publish new databases on-line. Molecular biology
alone, for instance, boasts over 1000 on-line databases [36],
many of which are curated.

Measured by the work that goes into producing them,
the cost of curated databases is huge. For example, there
are over 150 people listed as working full-time on UniProt.
As publications, curated databases provide academic kudos:
the “authors” of databases such as UniProt and OMIM [58]
are known primarily for providing comprehensive reference
works. Given their importance, good tools to support the
creation, maintenance, and evolution of curated databases
are required. In this respect, curated databases have some
characteristics that may challenge some of our precepts of
how a database functions:

Source. The majority of curated data is data that is
copied and edited from existing sources, perhaps other cu-
rated databases or printed articles. Often, the closest one
may get to “source” data is an opinion of the curator that
has been added as an annotation. All the other data has
been painstakingly extracted from other databases. Since
the value of curated databases lies in their quality and orga-
nization, knowing the origin of the curated data—its prove-
nance—is particularly important. Manually recording prove-
nance is both tedious and error-prone, thus automatic prove-
nance recording support is desirable.

Annotation. In addition to the core data, curated data-
bases also contain annotations that carry additional pieces
of information such as provenance, the conjectured function
of a gene, etc. For the purpose of easy construction of such
annotations, it becomes necessary to propagate annotations
made on a user’s view of the database back to the actual
core data, a non-trivial problem as we shall see.

Update. A common practice is to maintain a working
database that is updated by a community of curators and
periodically to “publish” versions of the database by dis-
tributing copies of the working database or by converting it
to an appropriate format (XML or HTML) for web publish-
ing. Given the role of curated databases as publications, it
becomes important to be able to cite particular versions of
the database, and to be able to retrieve a particular cited
version when looking up a reference. In other words, one
must make sure that the previous versions of the database
are digitally preserved. Since human data entry is slow, cu-
rated databases do not grow or change rapidly, and special-
ized archiving techniques can be used to reduce the amount
of storage necessary to record the complete history of the
database.

Archiving techniques should also support temporal (some-
times also called longitudinal) queries, which are particularly
important for databases like the World Factbook. For ex-
ample, one might want to query previous versions to retrieve
useful information such as the internet penetration of Liecht-

ID 143F HUMAN STANDARD; PRT; 245 AA.
AC Q04917;

DT 01-OCT-1993 (REL. 27, CREATED)
DT 01-FEB-1995 (REL. 31, LAST SEQUENCE UPDATE)
DT 01-NOV-1995 (REL. 32, LAST ANNOTATION UPDATE)

DE 14-3-3 PROTEIN ETA (PROTEIN AS1).
GN YWHAH OR YWHA1.

OS HOMO SAPIENS (HUMAN).
OC EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA; MAMMALIA;

OC EUTHERIA; PRIMATES.
RN [1]
RP SEQUENCE FROM N.A.

RC TISSUE=BRAIN;
RX MEDLINE; 94032477.

RA SWANSON K.D., DHAR M.S., JOSHI J.G.;
RL BIOCHIM. BIOPHYS. ACTA 1216:145-148(1993).
RN [2]

RP SEQUENCE OF 26-224 FROM N.A.
RC TISSUE=KERATINOCYTES;

RX MEDLINE; 93294871.
RA LEFFERS H., MADSEN P., RASMUSSEN H.H., HONORE B., ANDERSEN A.H.,

RA WALBUM E., VANDEKERCKHOVE J., CELIS J.E.;
RL J. MOL. BIOL. 231:982-998(1993).
CC -!- FUNCTION: ACTIVATES TYROSINE AND TRYPTOPHAN HYDROXYLASES IN THE

CC PRESENCE OF CA(2+)/CALMODULIN-DEPENDENT PROTEIN KINASE II, AND
...

CC -!- SUBUNIT: HOMODIMER (BY SIMILARITY).
CC -!- TISSUE SPECIFICITY: EXPRESSED MAINLY IN THE BRAIN AND PRESENT IN

CC OTHER TISSUES ALBEIT AT LOWER LEVELS.
CC -!- SIMILARITY: BELONGS TO THE 14-3-3 FAMILY OF PROTEINS.
DR EMBL; L20422; L20422.

DR EMBL; X57345; X57345.
DR PIR; S29339; S29339.

...
KW BRAIN; NEURONE; PHOSPHORYLATION; MULTIGENE FAMILY.
FT INIT MET 0 0 BY SIMILARITY.

FT MOD RES 1 1 ACETYLATION (BY SIMILARITY).
...

FT CONFLICT 156 156 G -> A (IN REF. 2).
SQ SEQUENCE 245 AA; 28058 MW; 289087 CN;

GDREQLLQRA RLAEQAERYD DMASAMKAVT ELNEPLSNED RNLLSVAYKN VVGARRSSWR
VISSIEQKTM ADGNEKKLEK VKAYREKIEK ELETVCNDVL SLLDKFLIKN CNDFQYESKV

... //

Figure 1: An abbreviated UniProt entry

enstein over the past five years, and perhaps correlate it with
economic data in this or another archived database.

Schema and structure. Many curated databases are
constructed“on the cheap”, starting life with a simple, struc-
tured design that allows basic description of the database
“entries” (genes, countries, proteins, and so on), which are
usually stored in a text file. Almost inevitably, the structure
of the entries evolves over time. UniProt, for example, has
always been distributed electronically in a specialized data
format (see Figure 1 for an early example), but the format
has been evolved to include new fields. As they evolve, cu-
rated databases may increase their dependence on database
technology, but the design is seldom fully normalized; the
fields themselves may contain structured text, and there is
often some redundancy. In other words: database technol-
ogy is used more to support persistence, concurrent access,
and indexing rather than the data model. In order for data-
base technology to succeed in also providing the data model
for future curated databases, it is important to gain an un-
derstanding of the processes by which the structure of cu-
rated databases evolves.

We will discuss each of these technical topics in more de-
tail in the following sections, but there are economic and
social factors that are equally important to the long-term
usefulness of curated databases. It is therefore worth taking
a brief look at these factors because they may also suggest

2

some interesting long-term challenges for database technol-
ogy.

1.1 Sustainability
During the nineteenth and twentieth century, thanks to

the development of public, university and other institutional
libraries, the function of libraries changed from one of own-
ership of data to one of distribution. A secondary but useful
effect of this is that much more was preserved. Nearly all of
our knowledge has been preserved by copying it: by an oral
tradition, by copying manuscripts, by the printing press, and
now by a plethora of digital media and computer networks
such as the Internet. Concentrating it in archival institu-
tions such as the libraries of Alexandria, Baghdad, Cotton,
and Louvain, which were all destroyed in various ways, was
probably counterproductive. Today – by archiving at remote
sites – we have reasonable methods for protecting our data
from physical destruction, but this is no guarantee against
the economic collapse of the organization that maintains the
data. There has been a proliferation of data centers over the
past years – many dedicated to the storage of scientific and
economic data – but one wonders whether, by analogy with
early libraries, we are endangering our data by placing it in
such centers. These depend on continued public funding and
there are signs [49] that such centers are no more sustainable
than early libraries.

A move towards massive systematic distribution of elec-
tronic publications is the LOCKSS [55] project in which a
large number of university libraries each keep a repository
of a set of publications, and a peer-to-peer synchronization
process ensures that the repositories are consistent and can-
not be corrupted either by bit-rot or deliberate interference.
We have likened curated databases to publications, so could
one build a LOCKSS system for databases? In addition to
the requirements for files, such a system would have to work
on incremental updates and would also have to work well
with archiving, something we discuss later in this paper.

1.2 Open access
Another transition that was in part due to the prolifer-

ation of university libraries was that, in the second half of
the twentieth century, academics and other scholars stopped
having to pay to get their research into print and dissem-
inated. Unlike textbooks, research articles are, unfortu-
nately, not a highly saleable commodity. The fact that we
no longer must pay for their distribution is largely due to
libraries who purchase our papers on behalf of the commu-
nities that they serve. This economic model of distribution
is still very much in use for electronic publications, but it is
showing signs of collapse. Although there are costs associ-
ated with the production (reviewing, collating and placing
in some repository) of an electronic journal, they are mostly
initial costs and should be small compared with paper dis-
tribution. The idea of open access is that the initial costs
should be paid for by the person (or institution or grant)
responsible for a publication. After this it should be freely
available.

As we have already mentioned, curated databases are un-
like research papers in that they are constantly updated. So
while many scientific curated databases are open access, it
is not clear that this is the right economic model for sup-
porting them. It is almost impossible to obtain indefinite
funding to support the development of a database, and un-

less there is institutional support for a curated database, it
is likely to lead a hand-to-mouth existence.

Of course, many curated databases – encyclopedias, dic-
tionaries and other reference works – have evolved from pa-
per publications that were sold, and they continue to charge
for their use. But charging policies vary and are generally
ill-defined: we give you small amounts of data for free, but
you have to pay for the whole database; or, we give you
the old data for free but you have to pay for the current
stuff. For scientific data, if we draw an analogy between a
curated database and a textbook or reference work, it is not
unreasonable to expect the user of the database to pay for
access, but how does one charge? Could a system of micro-
payments be designed for these databases? The problem is
complicated by the fact that curated databases copy one an-
other and if one database charges for access to some piece of
data, it might be required that some of payment goes to the
sources of that data. If such a scheme were to be developed,
a satisfactory model of provenance is essential.

These are just two areas of curated databases in which the
right model of data and data communication could be enor-
mously valuable. Open access impinges on copyright and
intellectual property issues, which is are hugely problematic
areas even before databases are considered.

Organization. The rest of this paper will cover some of the
technical issues that have recently been recognized by the
database community as important to the topic of curated
databases: propagation of annotations (Section 2), updates
(Section 3), why-provenance (Section 4), archiving and cita-
tion (Section 5), and evolution of structure (Section 6).

2. PROPAGATION OF ANNOTATIONS
In UniProt [2] the fields are classified into core data and

annotation. Core data includes information like the protein
sequence itself, which is extracted from other databases. An-
notation is additional information, like the conjectured func-
tion of a gene, that has been entered manually or is machine
generated by classification and sequence matching programs.
In UniProt, the process of annotation is carefully controlled
and annotations are placed only in designated annotation
fields. By contrast, the Distributed Annotation Server [31]
(DAS) is a client-server system that conveys annotations
that are external to the underlying database between user
interfaces. A an arbitrary user may annotate something such
as a segment of sequence data that appears in his or her in-
terface the data, and the annotation will appear to another
user using a different interface. Each user interface can com-
bine information from a number of annotation servers, each
of which acts as an external database for annotations.

2.1 Annotation models
As a mild leap of faith, we liken DAS to the process of an-

notating a view of some data and asking that the annotation
be carried backwards to the source data as well as forwards
to some other view. Since we are typically annotating a
small piece of data, such as a base data value, this requires
us to identify where, in the source, that piece came from
– its where-provenance. The importance of being able to
connect elements of the output of a query with those in the
input was first recognized in [51,72] in the context of data
integration. The process of annotation immediately com-
plicates traditional notions of query equivalence and hence

3

query optimization. Consider the two SQL queries:
Q1: SELECT R.A, R.B

FROM R,S
WHERE R.A=S.A
AND R.B=50

Q2: SELECT S.A, 50 AS B
FROM R,S
WHERE R.A = S.A
AND R.B=50

These queries are normally regarded as equivalent, and
the simple rewrite of R.B to 50 as B in the select clause is a
typical low-level optimization. If one regards the queries as
copying base values from the input to the output, however,
the queries behave differently: A-values in the output of Q1

are copied from R, while A-values in the output of Q2 are
copied from S. Moreover, B-values in the output of Q2 are
apparently created by Q2 itself. It is initially annoying that
we need to break the principle of substitution of equals for
equals for the purpose of annotation propagation; it calls
for a different model of both the underlying data and query
evaluation. The model that is developed in [8, 40] and im-
plicitly used in [17,18] is to add unique colors to components
of the input. These colors may be used to represent anno-
tations or to identify components for provenance tracking.
We then formalize how queries operate on colored tables.
In the following example there are instances of R and S in
which each base value has been annotated with a distinct
color, ♭1, ♭2, . . . ,. (We shall use ♭1, ♭2, . . . , for color values,
and ♭i, ♭j, . . . for color variables.) The output of the two
queries Q1 and Q2 shows how these colors are propagated.

A B

10♭1 49♭2

12♭3 50♭4

A B

11♭5 49♭6

12♭7 50♭8

A B

12♭3 50♭4

A B

12♭7 50⊥

R S Q1 Q2

(Here, ⊥ indicates that the value 50 does not originate
from the input, but was constructed by Q2 itself.) One can
consider an alternative representation of these annotated da-
tabases in which colors are first-class values by pairing each
column with another column of colors. An immediate ques-
tion is whether the transfer of colors that is implicit in our
queries can be represented by another query on the alterna-
tive representation that explicitly manipulates colors. The
problem is that in operations such as union and set-theoretic
projection, two base values can be“merged” and the annota-
tion is then a set of colors. For conjunctive queries, it is es-
tablished in [8,26] that there is indeed an explicit query that
can be used to express the annotation transfer. The authors
also examine the extension of SQL with explicit statements
to “steer” annotations through queries. In addition, they
propose the “DEFAULT ALL”propagation scheme in which
any two base values that are explicitly found to be equal
in a selection or that are implicitly identified in a union or
natural join have their annotations merged. Finally, the au-
thors also investigate the efficiency of computing annotation
propagation.

Although most work on annotation has considered annota-
tions only on single base values or whole rows, [40] provides
a system for attaching annotations to sets of base values oc-
curring in the same tuple. The authors point out that an
annotation on a base value should be regarded as a curator’s
opinion of the validity of the value and that this is better
modeled as an annotation on the relationship between the
base value and the key for the tuple containing that value.
In addition, they introduce a query language – a “color alge-
bra” – for querying annotations. Again an explicit relational
representation of such block-colored databases is introduced
and the color algebra is shown to express exactly all queries

that the positive relational algebra can express over the ex-
plicit relational representation of block-colored databases.
This result was later extended in [41] to full relational alge-
bra.

2.2 Reverse propagation of annotations
We noted earlier that there is a need to propagate an-

notations from a user’s view of the database back to the
source data: if an annotation is attached to some base value
in the output of a query, to what base value in the input
should it be attached? Given the rules proposed in [8,51,72]
for propagating input colors to the output of a query, one
can in principle answer this question by reversing the prop-
agation rules. In the case that the query contains a union
or a projection, however, a given color on an output base
value could be produced by more than one possible plac-
ing of that color on an input value. Moreover in the case
of a join, a color placed on an output base value can only
come from a single base value in the source, but that color
when carried forward may “spread” to other base values. A
source annotation that does not have any such side-effects,
i.e., that produces precisely the view annotation, is called
side-effect free. In [17] the problem of finding a side-effect
free annotation is shown to have NP-hard query complexity
for queries containing both a projection and join and was
later strengthened to DP-hardness in [69]. In all other cases
of positive queries, there is a polynomial time solution.

The problem of finding side-effect free annotation place-
ments is related to the view deletion problem: find a minimal
set of tuples in the source to cause the deletion of a tuple
in the output [1, 17, 28]. It is yet to be seen whether any of
these complexity results form a practical barrier to building
general systems for the reverse propagation of annotation.
In fact [27] shows that these problems become tractable for
classes of key-preserving queries. We should note, however,
that these results are for the default propagation rules for re-
lational algebra. There appear to be no results for reversing
the more complex forms of annotation suggested in [8,40].

2.3 Annotation and where-provenance
We have been using colors as a model for annotation, but if

we assume that unique colors are assigned to the source val-
ues, then the colors that annotate an output value also serve
as a description of where that element has come from. In
the DBNotes system [8,26], a language was developed for the
propagation of annotations through queries. As mentioned
earlier, in addition to allowing annotations to be propagated
based on where elements are copied from, it also allows an-
notations to be explicitly steered through the query. Thus,
a natural question is whether queries that explicitly manip-
ulate provenance is any more expressive than the implicit
provenance associated with a query. This question was an-
swered in [14] in a somewhat more general setting. First,
colors could be added to arbitrary structures (tuples and ta-
bles, as well as base values); second, update languages were
also considered. In this section we shall look at query lan-
guages.

Figure 2 shows a table in which all values – base val-
ues, tuples and tables – have been annotated with a color.
The default provenance is shown for a projection and se-
lection. A value that is constructed by a query receives
the color ⊥. Note the assumption that a tuple that is
preserved in its entirety (e.g. SQL’s SELECT *) retains

4

A B

10♭1 50♭2 ♭5

12♭3 50♭4 ♭6

♭7 A B

10♭1 50♭2 ♭5

⊥

B

50♭2 ⊥

50♭4 ⊥

⊥

R σA=10(R) πB(R)

Figure 2: Provenance annotation

its provenance. The output contains two tuples that dif-
fer only on their annotation; this is equivalent to one tu-
ple annotated with a set of colors. Because colors can be
attached to arbitrary structures, and because of the way
explicit provenance is represented, it is more convenient to
work in a domain of complex objects [19] or nested rela-
tions in which values can be freely constructed out of base
values, labeled records (A:e1, B:e2, . . .) and sets {e1, e2, . . .}.
Thus the un-annotated table in Figure 2 is represented by
the expression {(A:10, B:50), (A:12, B:30)}. In order to rep-
resent explicit annotations it is a simple matter to pair each
value with its color using a record with distinguished la-

bels V for value and C for color. For example, 50♭2 is

represented by (V:50, C:♭2), the tuple (A:10♭1, B:50♭2)♭5 by
(V:(A:(V:10, C:♭1), B:(V:50, C:♭2)), C:♭5) etc. These are nested
relational structures and can be manipulated by nested re-
lational algebra.

Three properties of implicit where-provenance were iden-
tified in [14]:

Copying Since we are dealing with queries rather than up-
dates any value that appears in the output must ei-
ther have been copied in its entirety from the input
or have been constructed by the query. In the latter
case the value will be colored with ⊥. Thus if a value
colored with ♭i, (♭i 6= ⊥) appears in the output, then
the same value with the same color must appear in

the input. For example, we cannot have 7♭i in the out-

put and 6♭i in the input. Moreover a value such as

(A : 7⊥, B : 8♭i)♭j that preserves the color of a tuple
but changes one of its components cannot be created
by a copying transformation.

Bounded inventing A query can generate only a bounded
number of base values; that is, only a bounded number
of base values in the output can be annotated with ⊥.

Thus a query that transforms {1♭1, 2♭2, . . . , n♭n}♭i into
{1⊥, 2⊥, . . . , n⊥}⊥ for any n is not bounded inventing.

Color propagating Since the purpose of color annotation
in describing provenance is to link input and output
values, this condition says that the query should not
be sensitive to the choice of colors. That is, it should
commute with any function – not necessarily injective
– that maps colors to colors. In particular, queries
that cannot perform equality comparisons on colors is
guaranteed to be color-propagating. Moreover, a color-
propagating function is characterized by its behavior
on distinctly-colored inputs, for which the colors can
be viewed as addresses.

It is straightforward to show that the implicit provenance
associated with a query satisfies these conditions. It is also
easy to construct queries that operate on explicit represen-

tations of colored complex objects that violate these condi-
tions.

In [14] it is shown that all explicit provenance queries that
are copying, bounded-inventing, and never compare colors
can also be expressed as implicit provenance queries. In
fact, [14] reported a stronger result, but the proof tech-
nique relied upon an unchecked assumption that all color-
propagating queries can be expressed by queries that do not
compare colors. In fact, this question is still open, but the
proof in [14] does establish expressive completeness with re-
spect to the syntactic restriction that explicit queries do not
compare colors.

Although there are some unresolved issues in the char-
acterization of provenance queries, the general message of
these results is useful: queries in the nested relational alge-
bra with implicit provenance express all reasonable prove-
nance mappings. Moreover, this result also holds if we are
restricted to “flat” tables and relation calculus. Thus the
explicit annotation propagation mechanisms of [8] are just a
syntactic convenience, if they are used only to record where-
provenance.

3. UPDATES IN CURATED DATABASES
We have discussed annotation for queries and its relation-

ship to where-provenance in some detail, but let us return
to the larger picture of curated databases. In systems such
as DAS, annotations are external to the core database and
are superimposed on it [9]. In UniProt, however, an annota-
tion is simply a part of the database that has been entered
or modified by a curator. Curated databases are created
by copying or abstracting data from other sources and later
correcting it. This is a process that is entirely familiar to
anyone who has constructed bibliographies for papers such
as this one. When doing so, one typically tries to find a
bibtex entry on the web, copies and pastes it into one’s own
bibliography, and then corrects it in accordance with one’s
own preferences. If this entry were an entry in a scientific
database, where-provenance information would include both
the source for the entry and a record of what update was
made and who made it. A whimsical account of curation is
given in [21].

It is important to reiterate that curated databases are
constructed by updates to an existing structure; they are
not views. So while UniProt contains some parts – such as
the taxonomic lineage and the citations – that have prob-
ably been imported automatically into the database, many
of the the fields are entered by people making individual
updates, and it is this activity that gives value to the data-
base. The source of these updates is sometimes information
extracted by the curator from a paper; it is also sometimes
simply copied from another, possibly curated, database. It
is quite common for this copying to be done by the com-
mon copy and paste commands that work in most desktop
environments. When data is copied between applications
or systems, its annotation, context, and especially where-
provenance information is lost.

3.1 A copy-paste model of curation
In an attempt to model this process [13] exploits a model

in which curated databases are semistructured trees, and the
fundamental operation is to copy a data element – as subtree
– from one tree to another. This provides a simple model of
provenance in which it is possible to ask questions such as

5

when some data value was first created, by what process did
that value arrive in a database, when was a subtree last mod-
ified, etc. The cost of storing such provenance information
appears to be prohibitive if done naively because some trail
of information needs to be kept of each node in the tree.
However this can be mitigated by two observations: first
that provenance information is hereditary: unless a node
in the tree has been modified, its provenance is that of its
parent node. Second, one can collect a sequence of basic
operations into a transaction, and there is a description of
the effects of the transaction that is shorter than recording
the log of basic operations. The latter is potentially useful
for databases that are published periodically (i.e, every few
months or so).

The major unsolved challenge here is the practical goal
of building provenance recording into the the tools that a
curator normally uses. This is a hard problem involving
not only data management, query language design and ef-
ficiency issues but also usability and organizational prob-
lems. While [13] addressed the problem of recording and
storing provenance, the task of formulating queries against
the resulting provenance store (and the raw data) was left to
users. Can we design a query language that provides good
high-level support for writing sophisticated queries against
curated databases involving provenance, the raw data, and
perhaps previous versions? This is challenging, since reason-
ing about copy-paste operations on trees is non-trivial [39].
On the organizational side, how can we convince both data-
base, operating system, and other application vendors and
independent database curators to adopt common standards
for provenance? This is a significant long-term challenge
requiring both technical and social development.

In practice, updates to a curated database are performed
through the update expressions of SQL. This includes both
manual copy-paste operations and bulk loading of data into
one database from another. Just as where-provenance has
been studied for query languages we may ask how update
languages manipulate where-provenance. Figure 3 shows
three SQL programs. Although they all have the same
“result”, the way they carry provenance is different. The
first SQL program is a query and is copying (in the sense
of Section 2.3) as a provenance-preserving transformation.
The second and third program are SQL updates and are
not copying as provenance-preserving transformations: they
preserve the color of a tuple or table while changing one of
its components.

Using a simple complex object update language [52], re-
sults paralleling those in Section 2 are also developed in [14].
Updates in this language satisfy a weaker semantic prove-
nance condition than queries, called kind-preservation: if a
value appears in the output with a given color, then the cor-
responding value in the input must must have the same type
(atom, record, or set); furthermore, if the value is an atom,
then the corresponding value in the input must be the same
atom. Thus a kind preserving transformation can drop or
add fields in tuples, or insert and delete elements of sets,
while preserving their provenance. The update language
with implicit provenance is shown to be complete with re-
gard to the update language in which colors can be explicitly
manipulated under the kind preserving, bounded inventing,
and no color-equality test conditions. It is still not known
how these results for the complex object update language
transfer to SQL updates on flat relations.

SELECT R.A 55 AS B
FROM R WHERE A <>10
UNION
SELECT * FROM R
WHERE A = 10

A B

10♭1 55⊥
⊥

12♭3 50♭4 ♭6

⊥

DELETE FROM R WHERE A = 10;
INSERT INTO R VALUES (10,55)

A B

10⊥ 55⊥
⊥

12♭3 50♭4 ♭6

♭7

UPDATE R WHERE A = 10;
SET B = 55

A B

10♭1 55⊥
♭5

12♭3 50cl4
♭6

♭7

Figure 3: Updates and provenance

When measured by the transformations between input
and output domains that they express, update languages
such as the update fragment of SQL do not add anything
to query languages; in contrast, provenance mappings pro-
vide an alternative method of characterizing update lan-
guages that highlights differences with queries. But kind-
preservation is a very weak condition. It allows one to empty
out a tuple and insert completely different fields into it while
preserving provenance. Whether this is a useful knowledge
is debatable and reminiscent of Theseus’ paradox [64]: sup-
pose we build a ship, and then replace each part of it over
its lifetime; is it the same ship? There appear to be other
possible models of provenance for update languages, for ex-
ample one could associate provenance with some form of key
preservation.

In addition, there has yet to be any work on provenance
in update languages for XML and other forms of semistruc-
tured data. Although it appears straightforward to extend
the approach of [14] to where-provenance for XQuery-style
queries, update languages for XML are still in development.
Most of them abandon a key design principle of XQuery (and
of SQL) by permitting unrestricted side-effecting operations
inside queries. Their semantics is sufficiently complex (and
the number of competing proposals sufficiently large) that
designing provenance-tracking techniques for them is prob-
ably premature. See [23] proposes for a different approach
to database-style XML updates that is much closer to the
complex object update language of [52] and has has been
designed with provenance-tracking in mind.

4. WHY-PROVENANCE
So far we have considered situations in which query and

update operations are primarily used to copy and rearrange
data in curated databases, and we have developed a model
to describe that process and, in particular, to tell us where
a particular value has come from. This is a rather restricted
view of provenance; one may also want to know why a given
tuple is in the output. The distinction between why- and
where-provenance was introduced and described in [18]. Why-
provenance is a more nebulous concept, because we have to
decide what counts as an explanation.

A trivial form of why-provenance is simply to give the
source database and the query. In some cases, such as a
query that counts the number of items in the database, this
trivial answer is probably the best. However, in other sit-

6

uations the database may be large and the query complex,
so that tracing the behavior of the query from the output
data back to the source is a nontrivial chore. Instead, the
reason for the presence of a given value can be explained by
a simpler query operating on a small part of the database.
For a simple query such as a selection, an explanation why a
tuple is in the output can be given by pointing to the tuple
in the source that satisfies the selection condition; all other
tuples are irrelevant.

In databases, why-provenance has been studied mostly for
tuples, and even in this simple case, it has taken some time to
arrive at clear and well-motivated definitions. One key issue
illustrating this problem is compositionality. For example,
suppose that, for a query Q, we proffer a candidate definition
P I

Q(t) of the set of tuples in the input I that “influenced” a
tuple t in the output Q(I). If we follow the natural intuition
that “influence” is a transitive relation, then the provenance
of tuples t in the output of of Q◦R, the composition of Q and
R should be P I

Q◦R(t) =
S

{P I
Q(t′) | t′ ∈ P I

R(t)}. Composi-
tionality is desirable because it implies that the provenance
behavior of a composite query can be obtained easily from
the provenance behavior of its subqueries, just as the ordi-
nary semantics of query composition corresponds to func-
tional composition.

Another problem in this area has been that there have
been many definitions of something called“why-provenance”,
but the definitions have not always been as rigorous as one
might like. There have also been several claims that the var-
ious definitions are equivalent in some sense, but no proofs.
We would like to try to begin to untangle this state of affairs
here by describing, naming, and formalizing the different ap-
proaches.

In [29], a form of provenance called lineage was intro-
duced, as a set of input tuples that“influenced”a tuple in the
result. A semantic criterion that accorded well with one’s
intuition was used to define this notion for each relational
algebra operation in isolation. Then lineage was defined for
arbitrary queries compositionally. The semantic criterion,
however, is not preserved under composition, and lineage is
sensitive to query rewriting.

In [18] why-provenance was defined for a semistructured
data model. We will translate the basic idea into relational
terms. Let Q be a monotone query. A witness to t ∈ Q(I)
is a subinstance J ⊆ I such that t ∈ Q(J). The why-
provenance of t ∈ Q(I) in [18] was defined as a particular
finite set of witnesses computed by inspecting the syntax
of Q. We call these witnesses proof witnesses and call this
form of provenance proof why-provenance to distinguish it
from the generic idea of why-provenance and other specific
proposed definitions. Provenance in [18] was defined only
for queries in a restricted form; the definition was not com-
positional, and was sensitive to query rewriting.

In [17], another definition of why-provenance was given,
which we term minimal why-provenance. A minimal witness
is simply a witness J such that no subset of J is a witness
to t ∈ Q(I). (In fact, minimal witnesses were also discussed
briefly in [18]). Then the minimal why-provenance of t ∈
Q(I) is just the set of all minimal witnesses to t ∈ Q(I).
Minimal why-provenance is invariant under query rewriting,
but it was initially unclear whether, and if so how, minimal
witnesses could be obtained compositionally or efficiently.
This is answered by a more general approach to provenance,
which we now describe.

R :
a b c p

d b e r

f b e s

V :
a c p + (p · p)
a e p · r
d c r · p
d e r + (r · r) + (r · s)
f e s + (s · s) + (s · r)

V (X, Z):− R(X, , Z)
V (X, Z):− R(X,Y,), R(, Y, Z)

Figure 4: Semiring provenance

4.1 Why-Provenance and Semirings
A remarkable paper [44] provides a unifying approach to a

number of extensions to the relational algebra using semir-
ings. The starting point is the observation that, in the pro-
cess of evaluation of a relational algebra expression, two
things can happen to tuples: they can be joined together
(in a join) or they can be merged together (in a union or
projection). Figure 4 shows how this can be exploited. The
left sides of R and V are tables, V being constructed from R

by the given query. The right side of R shows the identifiers
or “abstract quantities” associated with the source tuples.
The right side of V shows how the output tuples were de-
rived: (a, c) was formed by unioning (+) p with the result
of joining (·) p with itself; (a, e) was formed by joining p

and r. We can consider these as abstract polynomials that
describe how the tuple was formed, and if we look at the
properties of the union and join operations on tuples, e.g.,
“+” and “·” are both associative and commutative, “·” dis-
tributes over “+”, we conclude that these are polynomials
in a (commutative) semiring (K, +, ·, 0, 1). Various instan-
tiations of this abstract provenance semiring give rise to a
number of well-known extensions to positive relational al-
gebra: relational algebra itself, algebra with bag semantics,
C-tables [47], and probabilistic event tables [30,66].

It was claimed in [44] that why-provenance can be ob-
tained by evaluating using the structure P(X) equipped
with 0 = 1 = ∅ and + = · = ∪. This definition actually is
closest to lineage. Also, as pointed out by Tannen1, there is
a technical problem: (P(X),∪,∪, ∅, ∅) is not a semiring since
it does not satisfy the multiplicative annihilator law 0·a = 0.
Instead, the (apparently) intended behavior can be obtained
by taking P(X)∪{⊥} with 0 = ⊥, 1 = ∅, ⊥+S = S+⊥ = S,
⊥ · S = S · ⊥ = ⊥, and S + T = S · T = S ∪ T if S, T 6= ⊥.

A natural definition of proof why-provenance can be given
using a different semiring: the set P(P(X)) of all sets of
subsets of X, with 0 = ∅, 1 = {∅}, S+T = S∪T and S ·T =
{s∪ t | s ∈ S, t ∈ T}. Furthermore, as also pointed out to us
by Tannen, minimal why-provenance can be modeled using
the semiring of irreducible elements of P(P(X)), denoted
Irr(P(P(X))), that consists of those elements S ∈ P(P(X))
such that for every s, s′ ∈ S, if s ⊆ s′ then s = s′. This again
forms a semiring since it is the homomorphic image of the
minimization operation min(S) = {s ∈ S | ∀s′ ∈ S.s ⊆
s′ implies s = s′}. Specifically, in Irr(P(P(X))) we define
S + T as min(S ∪ T) and S · T as min{s ∪ t | s ∈ S, t ∈ T}.

Semirings are a useful tool in studying why-provenance.
All of the semiring-based definitions are compositional, and
clearly illustrate the relationships between lineage, minimal,

1Personal communication. Thanks also to Val Tannen for
the example.

7

and proof why-provenance: they are not exactly the same,
but they are related by homomorphisms h : P(P(X)) →
Irr(P(P(X))) and h′ : Irr(P(P(X))) → P ∪ {⊥}. We be-
lieve that this motivates abandoning the earlier attempts
as false starts. It may also be possible to use semirings
to formulate where-provenance. It is less obvious whether
semiring-valued relations can be extended to model prove-
nance in update languages. To begin with, the provenance
semantics for update operations that combine tuples or sets
is not commutative, so presumably some weaker structure
than a semiring would be needed.

4.2 Why-Provenance and Program Slicing
If why-provenance is supposed to be a simpler explana-

tion for a small part of the output of a query, then we should
consider techniques in other areas that address similar prob-
lems. For example, consider program slicing [73], a process
used in debugging. If, during a program execution, a vari-
able has an unexpected value, one would like to highlight
just that part of the program that was “responsible” for the
assignment of the value. One hopes that this part of the pro-
gram is substantially smaller than the whole program and
therefore easier to understand.

This idea leads to a form of provenance for databases,
called dependency provenance [22, 24]. In contrast to pro-
gram slicing, dependency provenance identifies a set of parts
of the input (i.e., the database) on which a given part of the
output depends, rather than a subset of program points.
In [24], dependency provenance was investigated for a nested
relational data model in which each part of the database is
annotated with a set of colors, and developed a semantic
correctness condition called dependency-correctness, which
ensures that each part of the output is annotated with the
colors of all parts of the input on which the output depends,
in a rigorous sense. Unfortunately, it is not possible auto-
matically to compute minimal dependency-correct annota-
tions, but it is possible to to approximate fairly well using
dynamic or static techniques.

4.3 Why-Provenance and Updates
We have argued earlier in the paper that updates are es-

sential in curated databases. If where-provenance makes
sense for updates, what about why-provenance? A curated
database is built through a long sequence of updates. It is
likely that only a very small number of those updates had
any effect on the data of interest, and that a satisfactory an-
swer is to provide the subsequence of relevant updates and
their sources. But what does “relevant” mean here, and is
it sensible to use the same approach as in why-provenance
for queries? Our experience with where-provenance suggests
that simply translating sequences of updates to “equivalent”
queries may be unsatisfactory from the point of view of
provenance.

4.4 Provenance and Workflow
No discussion of provenance would be complete without

mention of the large amount of work on workflow prove-
nance. Many scientific data sets are derived from raw data
by a complex analysis process involving several programs
– a workflow. Scientists need to record the enactment of
the workflow for two reasons: first to record precisely how
the data set was described and to avoid recomputation; sec-
ond because it is sometimes cheaper not to keep the derived

data, but to recompute it when needed. The recording of
a workflow enactment is also called (workflow) provenance.
Workflow provenance is sufficiently important that there is
a workshop largely devoted to this topic [59]; and workflow
systems such as Taverna [62] and Kepler [54] have been de-
veloped that record this form of provenance.

To date there has been little interaction between workflow
and data provenance research. In the workflow setting, the
solution to recording interactions with databases is simply to
record the state of the database itself (which requires us also
to record the database management system) and the query.
Note that this solution presupposes some form of archiving.
Quite recently, the importance of combining the two views of
provenance has been recognized. In [10] there is a proposal
for a stream-based model of workflow equipped with a notion
of provenance for elements of a stream. In [45] a more so-
phisticated model is developed based on Petri nets in which
the tokens are complex objects and the transitions can per-
form certain elementary operations on these objects. While
this is a rather low-level description of workflows, it may
well lead to a general notion of provenance that embraces
both data and workflow provenance. Reconciling these two
notions is one of the most immediate and interesting chal-
lenges of provenance research.

5. ARCHIVING AND CITATION
Most curated databases ask you to cite them, or provide

a link to them, but they differ widely in suggesting how you
are to do this. The IUPHAR database, for example, provides
links to the whole database or to one of the receptor families
(a group of entries). The problem with this is that anyone
using this link gets the current version of the database rather
than the version that was used when the link was created.
Since the database may be expected to change, the usual
principles of citation dictate that one should cite, or link to,
the appropriate version of the database. This requires that
all old versions are recoverable even when the database gets
constantly updated. There are numerous ways to do this –
from simply keeping all older versions of the database and
optionally compressing them with tools such as zip, to log-
ging all updates made to a database or keeping differences
between versions of the database. Such methods for archiv-
ing generally work very well if the objective is simply to
ensure that all past versions are recoverable. However, they
are not friendly to temporal or longitudinal queries that are
common for databases that change. For example, it is fre-
quently the case that temporal queries on demographic and
economic data arise when one browses the World Factbook.
It would be difficult to answer such queries over the archives
constructed with the these methods without at least an at-
tempt to evaluate the query on each version of the database
or an analysis of the log or diff files in the archive.

5.1 Database Archiving
Commercial relational database systems have started to

provide for “time travel” queries to temporal databases [50,
53]. The traditional method of providing past snapshots of
the database have been implemented by undoing the trans-
action logs, which are a critical component of transaction
processing. This technique is problematic because detailed
transaction logs are usually not retained permanently. Since
they can only be used to reconstruct past database states, it
is difficult to compare between versions of the database using

8

the transaction log. An alternative, well-known method [67]
is to tag each tuple with the interval during which it re-
mained present and unaltered in the database, i.e., its trans-
action time. An update to a tuple at time t causes the old
tuple to be preserved with t as its end time and a new tuple
to be generated with t as its start time. Past states of the
database are recovered by selecting the subset of tuples that
were active at a given time.

An alternative strategy for archiving hierarchical data [16]
essentially keeps all database versions intact in a compact
database archive. By viewing hierarchical data as a tree,
each node is associated with a time interval that captures
the time during which the node exists in the database (aka
the transaction time in [67]) if it is different from the time in-
terval of of its parent node. This is a generalization of the fat
node method in“persistent”data structures described in [32].
The main technical difficulty in [16] is how to merge a cur-
rent version of the database with the database archive. The
solution in [16] leverages hierarchical key constraints [15]
that naturally arise in well-organized curated databases such
as UniProt. In the presence of hierarchical key constraints,
it becomes possible to identify a node in a tree in a way
that is invariant to updates that are performed on the tree.
An archive is incrementally created by merging a node in
the database version with its identical node in the archive,
if present. Otherwise, a new node is created in the data-
base archive. This method has been shown to work well for
databases in which updates are mostly additions and when
a node tends to persist through many versions of the da-
tabase. Curated databases such as UniProt possess these
two properties and it has been shown that this archiving
technique is a space-efficient method for recording all past
versions. Since the archive is effectively another database,
this archiving technique is also a promising solution for an-
swering a range of temporal queries over hierarchical data
by, essentially, executing them directly on the archive [60].
Temporal queries for XML are starting to attract some in-
terest [37,60,71].

An open question is whether one could create an archive
directly from the transaction log. For hierarchical databases
that are actually stored in a native XML store, it may also
be possible to use the archive itself as the database.

5.2 Citation
For electronic documents, it is not yet clear whether cita-

tions are needed when one has reliable hyperlinking. This
is a big “if”: it assumes that the hyperlinking mechanism –
such as a URL or digital object identifier – is stable and that
the target of the hyperlink, the cited document, continues
to exist. An electronic citation often carries a hyperlink,
but it is more than a hyperlink in that it carries a small
amount of extra information such as title and author which
may help the reader recognize the cited work and avoid the
need to dereference the link. If we assume that citations
will continue to be used in electronic documents, then they
will also be needed for curated databases, but the citation
system needs to be more flexible. It is appropriate to cite
the authorship of an entry in the IUPHAR database in a
citation, since the authorship is recorded in the database,
and the authors want to be cited. This is not the case for
other curated databases, but some alternative information
might be appropriate instead. Initial proposals on how to
generate such citations automatically from the database and

how to organize the database so that it is citeable have been
reported in [12]. We should emphasize that proper archiving
is needed both for accurate citation and hyperlinking.

6. EVOLUTION OF STRUCTURE
The design of a database is almost impossible to get right

on the first try. The best one can hope for is to build some-
thing that is workable and that can be extended without too
much disruption to the applications that were written for the
initial design. For example, adding columns to a table in a
relational database seldom interferes with existing applica-
tions. Evolution of structure is particularly problematic for
curated databases. First, curated databases are often con-
structed “on the cheap”, starting from a design that is not
well-informed by database design principles. Second, once
the database becomes widely used, it is often useful to ex-
tend it with additional data imported from other databases.
Third, with the advance of scientific theories, the “world
model” e may change over time. Finally, the data model
itself may not initially be precise. This is especially true of
curated databases that evolve from semistructured or text
format into a more structured description.

Curated databases almost invariably consist of a sequence
of entries, each of some hierarchical form. That biologists
needed a flexible method of building databases was first rec-
ognized in the development of AceDB [68], based on a simple
edge-labeled tree model of data. Like the first proposals for
semistructured data [38], an AceDB database could be cre-
ated without a schema, and a schema could, if needed, be
retro-fitted to the data. By encoding lists as binary trees
and by allowing pointers to top-level entries, a range of data
types could be simulated in AceDB. The fact that it is still in
use today and has found applications outside of biology in-
dicates the need for a schema-less, semistructured approach
to database construction, at least in the early stages of data-
base construction. Since eventually one will want to retro-fit
a schema to the data, it also points to the need of automatic
schema inference for semistructured data, a topic that has
been investigated for web pages [74] as well as XML [4,6,7],
and ad-hoc semi-structured data [34].

The evolution of the schema of the UniProt entry in Fig-
ure 1 is interesting. Originally, this schema consisted of a
simple, line-oriented format which could not be extended
because it would break existing parsing tools. As a work-
around, extra fields such as FUNCTION, SUBUNIT, and SIMI-

LARITY were embedded in the comment field, something that
has been retained in the XML representation of UniProt en-
tries. So here, an extension that is easy for relational rep-
resentations is complicated by the fact that we are using a
serial data format.

The World Factbook shows a different kind of evolution.
It appears from past versions that the top-levels of the hi-
erarchical description of each country (describing categories
and properties) are reasonably stable, but that there is great
variation in the sub-properties. One of the problems here is
that for categories such as “government” there is no easy
way of describing all possible governmental structures by
a uniform list of properties and sub-properties. For exam-
ple, Government/Elections/Althing was a property unique
to Iceland that has been deprecated in recent versions of the
World Factbook. Only in the past year or so has a schema
been explicitly published; before that the schema was im-
plicit in the data (text or HTML).

9

6.1 XML and the evolution of structure
The hierarchical structure of curated data naturally sug-

gests using XML. The conventional wisdom in the research
community is that DTDs or XML Schemas are the most
appropriate method for specifying the structure of these da-
tabases. We believe this is debatable, if for no other reason
than that DTDs or XML Schemas seem to be used rarely in
practice, and when they are, only a few of their features are
actually used [5].

We believe that one reason for this is that DTDs do not
lend themselves to even simple forms of schema evolution.
In relational databases, adding a column is one of the most
harmless operations: it is a reasonable bet that existing ap-
plications will continue to work correctly after such a modi-
fication. This is an example of record subtyping in program-
ming languages [65], where we can always use a record with
fields A,B, C anywhere one with fields A, B is expected.

Suppose, however that we want to do the same with an
XML transformation specified against a DTD. For example,
suppose we want to insert a new symbol a into a regular
expression r. One possibility is to add a at the end of r,
thereby obtaining ra. Essentially all work on typechecking
and subtyping for XML programming and query languages
is based on language inclusion. Thus, a transformation that
expects an element of r may break if we provide an element
of ra, since the language ra is not a subtype of (that is,
contained in) r.

Therefore, it appears worthwhile to investigate alternative
definitions of subtyping that provide more flexibility when
the schema changes. For example, consider a form of width
subtyping: r is a subtype of r′ if every element of r′ is a
prefix of some element of r. This would suffice for the simple
example above, but it might not be ideal either, because
XML’s ordered data model forces some arbitrary choices.
For example, suppose we add add b to the end of ra get
subtype rab, and have a query q that uses r and b but not
a. If we later remove a, then this form of subtyping would
provide no guarantee that q would still work on rb.

A possible refinement that avoids this order-dependence is
to base subtyping on interleaving. If we define r1#r2 to be
the set of all strings constructed by interleaving some string
in r1 with some string in r2 we can express both record sub-
typing and the order constraints imposed by regular expres-
sions. Complexity issues associated with such an operator
have been studied in [42,43,56]. In particular, removing in-
terleaving can lead to an exponential increase in the size of
the regular expression, as is apparent from a#b#c#

It is not at all clear that either of these approaches is
satisfactory; however, until a good solution is found, XML
processing languages that are based on regular expression
types and inclusion subtyping [3, 46] will continue to have
problems with the kinds of extensibility to which we are
accustomed in database work. XML Schema tries to address
this problem simply by including both unordered record and
regular expression types, but it forbids their mixture.

In the face of this complexity one is forced to ask why
we are using DTDs to describe the structure of a curated
database in the first place? Perhaps we are confusing three
things: the underlying data model, the format by which the
data is commonly displayed, and the transmission format.
A simple complex-object model in which records, sets, and
lists can be freely combined, with record subtyping rather
than inclusion subtyping, is often adequate as an underlying

data model for the curated databases we have encountered.
Style-sheets for presentation based on such a model are easy
to construct, as is an appropriate variant of XPath. Note
that most XPath expressions are insensitive to the addition
of new tags, so we would expect them to have the same kinds
of guarantees about extensibility as we do for relational da-
tabases and SQL. Thus, perhaps the problems involving the
evolution of structure are better addressed on the complex-
object level, and XML should be used only for presentation
and data transmission.

If we focus on these better-motivated aspects of XML, and
not on using it to store or manage data within a database,
a number of interesting questions arise in connection with
optimality. Suppose one wants to move a substantial quan-
tity of data from one database to another. What is the best
XML serialization format? Even if the databases’ schemas
and contents are identical, this may be nontrivial – for ex-
ample, suppose we have two tables with the same schemas
and the same constraints, but the tables are clustered on
different keys. There is an immediate problem of construct-
ing the best serial format to optimize some combination of
extracting and loading costs; there appears to be little work
on this topic.

6.2 Object fission and fusion
There is a form of evolution that is problematic for curated

databases in which data entries split or have to be merged.
Splitting (fission) is a phenomenon one would expect in the
World Factbook over its existence. Merging (fusion) also oc-
curs in genetic databases when it is discovered, for example,
that two entries refer to the same gene. Fusion has been
studied in the context of data integration [63] but fusion in
curated databases is qualitatively different because it is a
temporal phenomenon. The problem is acute in connection
with archiving and temporal queries over the history of a da-
tabase. To deal with this phenomenon, UniProt introduces
and “retires” object identifiers, but records the retired iden-
tifiers along with the new, primary, identifier. This provides
some partial evidence of how entries were split and merged,
but it is far from complete. Given that fission and fusion are
so fundamental to the evolution of databases, they deserve
better treatment in data models, which should support, at
least, provenance queries of the general form form: “What
happened to X?” or “How did Y come about?”.

6.3 Ontologies
A number of curated databases are now called “ontologies”

rather than “databases”. There appear to be two, almost
orthogonal, issues at play here. The first is that ontologies
involve hierarchical classification or taxonomies. The Gene
Ontology [70] has three such hierarchies erected over an un-
derlying database of entries. From a database perspective,
the most interesting challenge is the representation and re-
cursive querying of hierarchical data – a challenge that has
been largely solved, but has not been realized in practical
systems.

The second point is that useful tools [57, 61] have been
built for the construction of knowledge representation in the
style of KL-One [11]. One of the attractions of these systems
is that one can, as with semistructured data, create data-
bases without having first constructed a schema; although
a better description of such an ontology would be that it
does not distinguish between the construction of schema and

10

data. As we have noted, in the early stages of construction
of a curated database, it is an advantage to be unconstrained
by a fixed schema; and this may be the reason for the grow-
ing popularity of these tools in curated databases. As far
as we are aware the study of many of the topics described
in this paper are as much in their infancy for ontologies as
they are for databases.

7. OTHER ISSUES AND CONCLUSIONS
Curated databases require a new approach to the con-

struction of databases. While much of the data in curated
databases is derived or extracted from other sources, they
are not views. Their value lies in the fact that the selection,
the annotation and the cleaning of data has all been done by
people. We are certainly very far from having a consistent
story to tell about them, but there are some threads such as
the connections between annotation, provenance, updates,
archiving, and evolution, that we have attempted to draw
out in this paper.

There are, naturally, many other topics that we have not
covered. In every interaction we have had with database
curators, data cleaning [33] is a major issue. So is the
whole field of data exchange. And of those topics we have
investigated there is much more to be done. There has
been recent work on provenance in XML and semistructured
data [25, 35]. The connection between provenance and pro-
gram debugging is in its infancy. Moreover, if ontologies are
also to be used to build curated databases, surely the issues
of provenance, annotation and archiving apply equally well
to them.

If finding good theoretical models in which to reason about
curated databases is challenging, bringing this theory to
practice is even more so. For example, how could we prac-
tically capture the copy-paste operation that is built into
desktop software in order to capture provenance? Can we
build databases that evolve in structure but provide guar-
antees on the functioning of existing software? Is capturing
everything we would like in provenance really feasible? If
not, what are the key tradeoffs? To re-iterate our initial
claim, the heart of the problem is finding simple models for
the processes in curated databases, and this is only going to
be solved through combined efforts from theory and prac-
tice.

Acknowledgements. The authors thank their colleagues
Umut Acar, Amal Ahmed, Adriane Chapman, Laura Chiti-
cariu, Wenfei Fan, Sanjeev Khanna, Leonid Libkin, Heiko
Mueller, Chris Rusbridge, Keishi Tajima and Val Tannen
for their help and for their collaboration on many of the
topics in this paper.

The authors also gratefully acknowledge support from the
following sources: Peter Buneman and James Cheney, the
United Kingdom Engineering and Physical Sciences Research
Council; Wang-Chiew Tan, National Science Foundation (NSF)
CAREER Award IIS-0347065 and NSF grant IIS-0430994.
Stijn Vansummeren is a Postdoctoral Fellow of the Research
Foundation - Flanders.

8. REFERENCES
[1] C. Aravindan and P. Baumgartner. Theorem proving

techniques for view deletion in databases. J. Symb. Comput.,
29(2):119–147, 2000.

[2] A. Bairoch and R. Apweiler. The SWISS-PROT protein
sequence data bank and its supplement trEMBL. Nucleic Acids
Research, 25(1):31–36, 1997.

[3] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an
XML-centric general-purpose language. In ICFP 2003, pages
51–63. ACM, 2003.

[4] G. J. Bex, W. Gelada, F. Neven, and S. Vansummeren.
Learning deterministic regular expressions for the inference of
schemas from XML data. In WWW 2008, 2008.

[5] G. J. Bex, F. Neven, and J. V. den Bussche. DTDs versus XML
Schema: a practical study. In WebDB 2004, pages 79–84, New
York, NY, USA, 2004. ACM.

[6] G. J. Bex, F. Neven, T. Schwentick, and K. Tuyls. Inference of
concise DTDs from XML data. In VLDB 2006, pages 115–126,
2006.

[7] G. J. Bex, F. Neven, and S. Vansummeren. Inferring XML
schema definitions from XML data. In VLDB 2007, pages
998–1009, 2007.

[8] D. Bhagwat, L. Chiticariu, G. Vijayvargiya, and W. Tan. An
annotation management system for relational databases. VLDB
Journal, 14(4):373–396, 2005.

[9] S. Bowers, L. Delcambre, and D. Maier. Enriching documents
in an information portal using superimposed schematics. In
dg.o ’02: Proceedings of the 2002 annual national conference
on Digital government research, pages 1–6. Digital
Government Research Center, 2002.

[10] S. Bowers, T. McPhillips, B. Ludaescher, S. Cohen, and S. B.
Davidson. A model for user-oriented data provenance in
pipelined scientific workflows. In Moreau and Foster [59], pages
133–147.

[11] R. J. Brachman and J. G. Schmolze. An overview of the
KL-ONE knowledge representation system. Cognitive Science,
9(2):171–216, 1985.

[12] P. Buneman. How to cite curated databases and how to make
them citable. In SSDBM 2006, pages 195–203. IEEE Computer
Society, 2006.

[13] P. Buneman, A. Chapman, and J. Cheney. Provenance
management in curated databases. In SIGMOD 2006, pages
539–550, 2006.

[14] P. Buneman, J. Cheney, and S. Vansummeren. On the
expressiveness of implicit provenance in query and update
languages. In Database Theory - ICDT 2007, volume 4353 of
LNCS, pages 209–223, 2007.

[15] P. Buneman, S. B. Davidson, W. Fan, C. S. Hara, and W. Tan.
Keys for XML. Computer Networks, 39(5):473–487, 2002.

[16] P. Buneman, S. Khanna, K. Tajima, and W. Tan. Archiving
scientific data. ACM Trans. Database Syst., 27(1):2–42, 2004.

[17] P. Buneman, S. Khanna, and W. Tan. On the propagation of
deletions and annotations through views. In PODS 2002, pages
150–158. ACM, 2002.

[18] P. Buneman, S. Khanna, and W. C. Tan. Why and where: A
characterization of data provenance. In Database Theory -
ICDT 2001, volume 1973 of LNCS, pages 316–330, 2001.

[19] P. Buneman, S. A. Naqvi, V. Tannen, and L. Wong. Principles
of programming with complex objects and collection types.
Theor. Comp. Sci., 149(1):3–48, 1995.

[20] Central Intelligence Agency. The world factbook.
http://www.cia.gov/cia/publications/factbook/.

[21] A. Chapman and H. V. Jagadish. Issues in building practical
provenance systems. IEEE Data Eng. Bull., 30(4):38–43, 2007.

[22] J. Cheney. Program slicing and data provenance. IEEE Data
Eng. Bull., 30(4):22–28, 2007.

[23] J. Cheney. Lux: A lightweight, statically typed XML update
language. In ACM SIGPLAN Workshop on Programming
Language Technology and XML (PLAN-X 2007), pages 25–36,
2007.

[24] J. Cheney, A. Ahmed, and U. A. Acar. Provenance as
dependency analysis. In Database Programming Languages -
DBPL 2007, volume 4797 of LNCS, pages 139–153. Springer,
2007.

[25] L. Chiticariu and W. Tan. Debugging schema mappings with
routes. In VLDB 2006, pages 79–90, 2006.

[26] L. Chiticariu, W. Tan, and G. Vijayvargiya. DBNotes: A
post-it system for relational databases based on provenance. In
SIGMOD 2005, pages 942–944, 2005. (Demonstration paper).

[27] G. Cong, W. Fan, and F. Geerts. Annotation propagation
revisited for key preserving views. In CIKM 2006, pages
632–641. ACM, 2006.

[28] Y. Cui and J. Widom. Run-time translation of view tuple
deletions using data lineage. Technical report, Stanford
University, 2001.

[29] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of

11

view data in a warehousing environment. ACM Trans.
Database Syst., 25(2):179–227, 2000.

[30] N. Dalvi and D. Suciu. Management of probabilistic data:
foundations and challenges. In PODS 2007, pages 1–12. ACM,
2007.

[31] R. D. Dowell, R. M. Jokerst, A. Day, S. R. Eddy, and L. Stein.
The distributed annotation system. BMC Bioinformatics, 2:7,
2001.

[32] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan.
Making Data Structures Persistent. J. Comput. Syst. Sci.,
38(1):86–124, 1989.

[33] W. Fan. Dependencies revisited for improving data quality. In
PODS 2008. ACM, June 2008. These proceedings.

[34] K. Fisher, D. Walker, K. Q. Zhu, and P. White. From dirt to
shovels: fully automatic tool generation from ad hoc data. In
POPL 2008, pages 421–434. ACM, 2008.

[35] J. N. Foster, T. Green, and V. Tannen. Annotated XML:
Queries and provenance. In PODS 2008. ACM, June 2008.
These proceedings.

[36] M. Y. Galperin. The molecular biology database collection:
2008 update. Nucleic Acids Research, 36, 2008.

[37] D. Gao and R. T. Snodgrass. Temporal slicing in the evaluation
of XML queries. In VLDB 2003, pages 632–643, 2003.

[38] H. Garcia-Molina, Y. Papakonstantinou, D. Quass,
A. Rajaraman, Y. Sagiv, J. D. Ullman, V. Vassalos, and
J. Widom. The TSIMMIS approach to mediation: Data models
and languages. J. Intell. Inf. Syst., 8:117–132, 1997.

[39] P. Gardner, G. Smith, M. Wheelhouse, and U. Zarfaty. Local
hoare reasoning about DOM. In PODS 2008, June 2008. These
proceedings.

[40] F. Geerts, A. Kementsietsidis, and D. Milano. MONDRIAN:
Annotating and querying databases through colors and blocks.
In ICDE 2006, page 82. IEEE Computer Society, 2006.

[41] F. Geerts and J. Van den Bussche. Relational completeness of
query languages for annotated databases. In Database
Programming Languages - DBPL 2007, volume 4797 of LNCS,
pages 127–137, 2007.

[42] W. Gelade, W. Martens, and F. Neven. Optimizing schema
languages for XML: Numerical constraints and interleaving. In
Database Theory - ICDT 2007, volume 4353 of LNCS, pages
269–283. Springer, 2007.

[43] G. Ghelli, D. Colazzo, and C. Sartiani. Efficient inclusion for a
class of XML types with interleaving and counting. In Database
Programming Languages: DBPL 2007, volume 4797 of LNCS,
pages 231–245, 2007.

[44] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance
semirings. In PODS 2007, pages 31–40. ACM Press, 2007.

[45] J. Hidders, N. Kwasnikowska, J. Sroka, J. Tyszkiewicz, and
J. V. den Bussche. DFL: A dataflow language based on petri
nets and nested relational calculus. Inf. Syst., 33(3):261–284,
2008.

[46] H. Hosoya and B. C. Pierce. XDuce: A statically typed xml
processing language. ACM Trans. Interet Technol.,
3(2):117–148, 2003.

[47] T. Imielinski and J. Witold Lipski. Incomplete information in
relational databases. J. ACM, 31(4):761–791, 1984.

[48] IUPHAR receptor database. http://www.iuphar-db.org.

[49] S. Jones, D. Abbott, , and S. Ross. Risk Assessment for AHDS
Performing Arts Collections: A Response to the Withdrawal of
Core Funding. Technical report, Glasgow, December 2007.

[50] S. Kumar and T. Bednar. Oracle9i flashback query. Technical
report, Oracle Corporation, 2001.

[51] T. Lee, S. Bressan, and S. E. Madnick. Source attribution for
querying against semi-structured documents. In First
Workshop on Web Information and Data Management, pages
33–39. ACM, 1998.

[52] H. Liefke and S. B. Davidson. Specifying updates in biomedical
databases. In SSDBM 1999, pages 44–53. IEEE, 1999.

[53] D. Lomet, R. Barga, M. F. Mokbel, G. Shegalov, R. Wang, and
Y. Zhu. Immortal DB: transaction time support for SQL server.
In SIGMOD 2005, pages 939–941. ACM, 2005.

[54] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins,
E. Jaeger-Frank, M. Jones, E. Lee, J. Tao, and Y. Zhao.
Scientific workflow management and the Kepler system.
Concurrency and Computation: Practice & Experience,
18(10):1039–1065, 2006.

[55] P. Maniatis, M. Roussopoulos, T. J. Giuli, D. S. H. Rosenthal,
and M. Baker. The LOCKSS peer-to-peer digital preservation
system. ACM Trans. Comput. Syst., 23(1):2–50, 2005.

[56] A. J. Mayer and L. J. Stockmeyer. Word problems-this time
with interleaving. Inf. Comput., 115(2):293–311, 1994.

[57] D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. The
Chimaera ontology environment. In Proceedings of Twelfth
Conference on Innovative Applications of Artificial
Intelligence, pages 1123–1124. AAAI Press, 2000.

[58] V. A. McKusick. OMIM - online mendelian inheritance in man.
www.ncbi.nlm.nih.gov/omim/.

[59] L. Moreau and I. T. Foster, editors. Provenance and
Annotation of Data - IPAW 2006, volume 4145 of LNCS.
Springer, 2006.

[60] H. Müller, P. Buneman, and I. Koltsidas. XArch: Archiving
scientific and reference data. In SIGMOD 2008, June 2008.
Demonstration Paper. To appear.

[61] N. F. Noy, M. Sintek, S. Decker, M. Crubezy, R. W. Fergerson,
and M. A. Musen. Creating semantic web contents with
Protege-2000. IEEE Intelligent Systems, 16(2):60–71, 2001.

[62] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger,
M. Greenwood, T. Carver, K. Glover, M. R. Pocock, A. Wipat,
and P. Li. Taverna: a tool for the composition and enactment
of bioinformatics workflows. Bioinformatics, 20(17):3045–3054,
2004.

[63] Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina.
Object fusion in mediator systems. In VLDB 1996, pages
413–424. Morgan Kaufmann, 1996.

[64] Plutarch. Vita Thesei 22-23.

[65] D. Rémy. Type inference for records in a natural extension of
ML. In Theoretical aspects of object-oriented programming.
MIT Press, 1994.

[66] A. D. Sarma, O. Benjelloun, A. Halevy, and J. Widom.
Working models for uncertain data. In ICDE 2006, page 7.
IEEE Computer Society, 2006.

[67] R. T. Snodgrass. Developing Time-Oriented Database
Applications in SQL. Morgan Kaufmann, July 1999.

[68] L. D. Stein and J. Thierry-Mieg. AceDB: A genome database
management system. Computing in Science and Engg.,
1(3):44–52, 1999.

[69] W. Tan. Containment of relational queries with annotation
propagation. In Database Programming Languages - DBPL
2003, volume 2921 of LNCS, pages 37–53. Springer, 2003.

[70] The Gene Ontology Consortium. Gene ontology: tool for the
unification of biology. Nature Genetics, 25(1):25–29, May 2000.

[71] F. Wang and C. Zaniolo. Temporal queries in XML document
archives and web warehouses. In TIME, pages 47–55. IEEE
Computer Society, 2003.

[72] Y. R. Wang and S. E. Madnick. A polygen model for
heterogeneous database systems: The source tagging
perspective. In VLDB 1990, pages 519–538. Morgan
Kaufmann, 1990.

[73] M. Weiser. Program slicing. In ICSE, pages 439–449,
Piscataway, NJ, USA, 1981. IEEE Press.

[74] G. Yang, I. V. Ramakrishnan, and M. Kifer. On the complexity
of schema inference from web pages in the presence of nullable
data attributes. In CIKM 2003, pages 224–231. ACM, 2003.

12

